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would give the 12 vertices of an icosahedron and 
locally icosahedral symmetry, which is, of  course, in 
conflict with periodicity, but  as we have seen not with 
quasi-periodicity. 

I thank J. C. Toledano, R. Struikmans and the 
referee for pointing out relevant references. 
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Abstract 

Deformation and valence-electron densities in silicon 
are derived via Fourier summation and multipole 
refinement of  highly accurate measurements of X-ray 
structure factors. These results provide a new perspec- 
tive for the comparison between theory and experi- 
ment. The model electron density derived from 
experiment is in quantitative agreement with recent 
solid-state calculations, but  not with earlier experi- 
mental results reported by Yang & Coppens [Solid 
State  C o m m u n .  (1974), 15, 1555-1559]. 

Introduction 

Experimental  electron distributions for crystalline 
silicon have been the subject of  numerous investiga- 
tions [e.g. see Scheringer (1980), Fehlmann (1979), 

* Present address: Department of Crystallography, University 
of Pittsburgh, Pittsburgh, PA 15260, USA. 

Price, Maslen & Mair (1978; referred to below as 
PMM),  Yang & Coppens (1974; referred to as YC), 
Aldred & Hart  (1973; referred to as AH)  and referen- 
ces therein]. In this work we take advantage of  recent 
highly accurate experimental reports on silicon, 
which, in combination with the earlier measurements 
of  AH, provide data sets of  extraordinarily high 
quality. 

The important  222 reflection in silicon was 
remeasured by M E r e ,  Yelon & Schneider (1982), 
with an accuracy better, by a factor of between two 
and ten, than previous measurements. Alkire et al. 
report F222 at room temperature with an accuracy of  
0.5%, a measurement  of  accuracy similar to the AH 
data ( - 0 . 1 % ) .  

Teworte & Bonse (1984) measured silicon structure 
factors for 16 reflections at room temperature with 
both Ag K a l  and Mo K a l  radiations which were also 
used by AH. Teworte & Bonse's work verified AH's  
measurements,  and confirmed the claimed accuracy 
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of 0.1% or better. They also measured two reflections 
(551 and 300) not reported by AH. 

Other recent experimental results include the mag- 
nitude and phase of the 442 and 622 reflections by 
Tischler & Batterman (1984), and a measurement to 
an accuracy of better than 1 in 10 9 of the refractive 
index of silicon by Deutsch & Hart (1984). This latter 
work provides values of the real part of the dispersion 
corrections for Ag K6 and Mo K6 with accuracies 
of better than 5%. 

Combination of these measurements with those of 
AH provides extensive data at two wavelengths, 
which are more accurate than any previously ana- 
lysed. Here we take advantage of these superb data, 
providing a new perspective for a comparison 
between experiment and theory, as recently suggested 
by Alkire et al. (1982). 

We analyse combined data sets, at two wavelengths, 
pursuing both Fourier methods, as used by YC, and 
a rigid pseudoatom model (Stewart, 1973, 1976) to 
explore the effects of series termination and thermal 
motion. Where possible, standard deviations (e.s.d.'s) 
in the results are determined from the errors in the 
experimental observations, and the curvature of the 
least-squares error surface at the minimum. 

The data sets 

A weighted mean of the measurements of AH and 
Teworte & Bonse (1984) was calculated for the reflec- 
tions measured twice at each wavelength (Mo Kal 
and Ag Kal).  The measurements of AH were correc- 
ted for the more precise lattice constant, ao = 
5.43102018 (39) A (Becker, Seyfried & Siegert, 1982) 
in the manner of Teworte & Bonse (1984). The vari- 
ance in the mean was used to estimate standard 
deviations for the data. Measurements reported by 
only one group were added to the mean data. In this 
manner data sets of 17 reflections were obtained for 
each wavelength. To these were added the 222 
measurement of Alkire et al. (1982), and the observa- 
tions of 442 and 622 by Tischler & Batterman (1984). 
All observations were either measured at, or conver- 
ted to, room temperature (between 293 and 298 K). 
Although the 222, 442 and 622 reflections were 
measured at wavelengths different to either Ag Ka~ 
or Mo Kal, none of these reflections have significant 
contributions from anomalous dispersion, and no 
problem arises from the inclusion of the measure- 
ments of these reflections in both data sets. 

The raw data thus consist of 20 measurements for 
each radiation. The data are complete out to sin 0/h = 
0.52 A-1 (440), and incomplete up to a maximum of 
1.04/~-~. A complete data set with sin 0/h < 1.05/~,-~ 
would include 51 reflections. No attempt was made 
to incorporate structure factors measured by Hattori, 
Kuriyama, Katagawa & Kato (1965; referred to as 
HKKK) but not by AH. These measurements are not 

as accurate as those discussed above [o-(F)-~ 1.4%] 
and, as indicated by Scheringer (1980), do not have 
the accuracy necessary to determine Ap to better than 
0.02 e ,~-3. Their inclusion would compromise the 
efforts made in this work to obtain a representation 
of p(r) commensurate with the accuracy of the other 
data. 

In both Fourier mapping and the least-squares 
refinements the structure factors were corrected for 
anomalous dispersion using the real dispersion cor- 
rections f ' ,  measured for Ag K6 and Mo K6 radi- 
ations by Deutsch & Hart (1984). The differences 
between values at these mean wavelengths and those 
appropriate to the Kal radiation are very small, being 
15% of the e.s.d.'s in f '  reported by Deutsch & Hart. 
These f '  values are substantially larger than the con- 
ventional values obtained theoretically by Cromer & 
Liberman (1970). However, they are in excellent 
agreement with other measurements of f '  in Si by 
Creagh (1984) and by Cusatis & Hart (1975). Since 
nuclear Thomson scattering behaves in a manner 
identical to f '  corrections, we added 0.0038 to the 
experimental f '  values, a nuclear scattering correction 
appropriate to Si. The combined correction values 
used were 0.0575 (Ag) and 0.0885 (Mo). No angle 
dependence was assumed for f ' ,  apart from the 
Debye-Waller factor. 

Within the convolution approximation the atomic 
scattering factor is multiplied by a temperature factor 
which is the Fourier transform of the nuclear proba- 
bility distribution function. The temperature factor is 
due both to harmonic and anharmonic atomic vibra- 
tions. In view of the 43m site symmetry of the Si 
atoms the harmonic term, exp[ -B(s in  0/A)2], is 
isotropic, and the dominant anharmonic effect is the 
cubic term (Dawson, Hurley & Maslen, 1967; Willis 
& Pryor, 1975). The data were corrected for anhar- 
monic effects in the manner described in detail by 
PMM and Fehlmann (1979). The cubic anharmonic 
force constant employed was fl = 3.38 eV A-3 (5.42 x 
1011jm-3), obtained from the room-temperature 
neutron 222 reflection (Roberto, Batterman & Keat- 
ing, 1974; Keating, Nunes, Batterman & Hastings, 
1971). This value of/3 was also used by Fehlmann 
(1979) and PMM. It is much larger than the near- 
constant value of ---1.67 eV/~-3 reported by Roberto 
et al. (1974) at higher temperatures, the values of 1.61 
and 1.38 eV A-3 obtained by Hastings & Batterman 
(1975) from the temperature dependence of the 
neutron 442 and 622 reflections, and values of 1.65 
and 1.41 eVA -3 obtained by Tischler & Batterman 
(1984) from the temperature dependence of the X-ray 
442 and 622 reflections. The consequences of these 
differences in/3 are discussed below. 

The anharmonic correction applies only to reflec- 
tions for which h + k + l = 4n, and since it is propor- 
tional to the product hkl, only to those reflections for 
which hkl~O. Thus only eight reflections require 
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correction, the largest effect being for 555, where the 
correction increases IFI by about 3cr(lF[). The magni- 
tude of the critical 222 structure factor is increased 
by almost 2~(IFI), to a value of 1-470(9). cr(IFI) 
values were adjusted to incorporate the 10% experi- 
mental error in/3. Anharmonicity-corrected values of 
the 442 and 622 structure factors were taken from 
Table II of Tischler & Batterman (1984) r~bona t- si(442) and 
Fbond si(622) in that table]. 

Analyses of the data 

A rigid pseudoatom model was employed to obtain 
a minimally biased estimate of the isotropic thermal 
parameter, B, and a deconvolution of the electron 
distribution from its thermal motion. The nomen- 
clature used here follows that outlined by Stewart 
(1973, 1976). Although Scheringer (1980) has demon- 
strated that a simple model of atomic cores and 
Gaussian-distributed charge clouds placed at the 
centre of bonds gives an expedient description of the 
accumulation of charge in some covalent bonds, it is 
clear from Spackman & Maslen (1985) that there is 
no necessity for electron density to accumulate 
between any pair of bonded atoms, including 
covalently bonded atoms. It is therefore desirable to 
use some form of multipole expansion to fit the elec- 
tron density in the most unbiased manner possible. 

For the cubic site symmetry of the Si atom in the 
diamond structure, the allowed multipoles up to 
fourth order are monopole, octopole and 
hexadecapole (Dawson, 1967). In Stewart's notation, 
the allowed multipoles are 04, hi and /'/9, each with 
variable populations, 04,  H1 and H9, with the con- 
straint H1 = H9. 

With data as accurate as those considered here, the 
choice of radial functions is crucial. For the monopole 
we use the density-localized K and L shells obtained 
by Stewart (1980) from the Hartree-Fock atomic 
wavefunction of Clementi (1965). In previous analy- 
ses of silicon X-ray data, AH, PMM and Fehlmann 
(1979) conclude that allowance for spherical defor- 
mation of the valence electron density is important 
for an adequate description of the structure factors. 
We therefore choose an M-shell electron density with 
variable K which allows expansion or contraction of 
the electron density (Coppens, Guru Row, Leung, 
Stevens, Becker & Yang, 1979). We use the density- 
localized M-shell function compatible with the K 
and L shells above. This choice of density-localized 
monopole shells facilitates comparison of the results 
with theory, as the M shell is essentially nodeless, 
and very similar to the radial wavefunctions obtained 
from pseudopotential calculations [e.g. see Fig. 2 of 
Yin & Cohen (1982)]. Jacobi fits to these and the 
corresponding canonical orbital scattering factors for 
first- and second-row atoms have been reported by 
van der Wal & Stewart (1984). 

As all experimental data are on an absolute scale, 
no variable monopole populations or scale factors 
were included in the refinements. Octopole and 
hexadecapole radial functions are single exponential, 
r n exp ( -a t r ) ,  with n = 4 for both higher multipoles. 
Initially the radial exponents, a3 and c~4, were varied 
separately, but it was evident that although aa was 
well determined by the data, a4 refines to a value 
close to aa, with a large e.s.d. It was decided to 
constrain c~3 = a4 = a. 

The model structure factors, F~ ,  were constructed 
from a model with five variables: B, 04,  H1 = H9, 
K and a. The optimum values of these were obtained 
by minimization of the residual 

e = E wH(IF~I2-[F~I2) 2, 
H 

with wu = cr-2(lF~[2), [F~I being the observed struc- 
ture-factor magnitudes. The minimization procedure 
used is as outlined by Spackman & Stewart 
(1984, 1986). Convergence to a local minimum was 
tested by inclusion of second derivatives in the final 
least-squares cycle. The convergence criterion 
described in those works is satisfied for all 
refinements, and e.s.d.'s reported below are from 
inverse least-squares matrices including second 
derivatives. 

Results of the refinements for the Ag and Mo data 
sets are given in Table 1. The refined parameters from 
the two data sets agree with one another to within 
their respective e.s.d.'s in all cases, an impressive 
verification of their quality. The value of B is sensitive 
to the form of the core scattering factors used in its 
derivation. The mean B value obtained here, 
0.4632 (11)/~2, although slightly lower than typical 
values obtained by PMM, is in excellent agreement 
with the value of 0.461 (3)/~2 obtained by AH. 

The mean value of K, the valence monopole 
expansion/contraction parameter, is 0.951 (7), 
reflecting an approximate 5% expansion of the 
valence electron density. Valence-shell expansion of 
a similar magnitude (6.8%) was derived in a different 
manner by AH. In the analysis of a slightly different 
data set, Fehlmann (1979) used the same M-shell 
model as AH, obtaining an expansion of 5.3%. 
Hansen & Coppens (1978) also performed a K 
refinement on a combined silicon data set, obtaining 
K = 0.956 (9) for a canonical M-sheU function. 

The exponent of the octopole and hexadecapole 
radial functions, a, has a mean value of 
2.36 (4) a.u. -1, and is comparable with values 
obtained by PMM (2.2 to 2-7 a.u.-i). It is similar to 
values of 2.25 (11) and 2.35 (11) a.u. -1 obtained by 
Spackman, Hill & Gibbs (1986) for the silicon radial 
functions in a pseudoatom refinement of X-ray data 
on stishovite, SiO2. 

The values of e at the minima, given in Table 1, 
suggest that the model fits the Mo data better than 
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Table 1. Results o f  pseudoatom refinements o f  com- 
posite Ag and Mo data sets for silicon 

Ag Mo 

B ( k  2) 0.4638 (12) 0.4625 (10) 
K 0.9467 (72) 0.9543 (62) 

a (a.u. -~) 2.345 (44) 2.371 (40) 
04  -0.446 (46) -0.432 (40) 
H9 -0.098 (17) -0.105 (15) 

e 74.31 52"40 
g.o.f. 2.23 1-87 

R ( F )  (%) 0.13 0.10 
w R ( F )  (%) 0.24 0.25 
R ( F 2 ) ( % )  0"21  0"17  

w R ( F  2) (%) 0.27 0.23 

the Ag data. This is reflected in the substantially larger 
goodness-of-fit (g.o.f.) and R factors for the Ag data. 
Table 2 gives the residuals, a lFI, and the ratio 
alFI/~(IFI), for both multipole refinements. For all 
reflections except the 442 and 622 (which we discuss 
below), the square of the ratio AIFI/~(IF I) is a good 
approximation to the contribution of that reflection 
to e. 

It is evident from Table 2 that four reflections (220, 
422, 555 and 880) comprise 70% of e for the Ag 
refinement. These same reflections comprise only 
16% of e for the Mo refinement. There is nothing 
systematic about the size of the discrepancies in the 
two cases. For example, AIFI/tr(IFI) for 422 and 880 
is large for one data set, and small for the other. 
However, there is an overall systematic trend in the 
residuals; AIF I is close to zero for very low sin 0/A, 
becomes increasingly negative, then approaches zero 
and becomes positive for high sin0/A. This 
behaviour, evident in both refinements, indicates very 
small features not accounted for by the pseudoatom 
model. 

To explore this in more detail, we map the residual 
electron density obtained by Fourier summation of 
F ~ -  F ~  for the Ag and Mo data sets in Fig. 1. The 
contour interval of 0.005 e]k -3 reflects the size of the 
e.s.d.'s derived from the experimental errors in IF~I 
(typically between 0.004 and 0.006 e ~-3 for both 
data sets). Features exceeding two or three contour 
levels may be regarded as significant. Although there 
are several such features in both maps, the only sub- 
stantial features common to both maps are those 
around the nuclei. These are depressions with depths 
of -0 .031 (6 )eA  -3 in the Ag data map, and 
-0.019 (5) e .~-3 for the Mo data. In both cases the 
minima occur in directions parallel to the map axes 
(i.e. [100] and [110]), and away from the nuclei, which 
are located on local maxima. Another feature com- 
mon to both maps in Fig. 1 is the peak behind the 
nuclei, reaching 0.013 (5) and 0.010 (4) e A -3 in the 
Ag and Mo maps respectively. 

Several explanations might be proposed for these 
features. These include incorrect corrections for 
anomalous dispersion, and erroneous or incomplete 
anharmonicity corrections. However, if we assume 

Table 2. Residuals, alFHI = I F ~ I -  IF;~I, after pseudo- 
atom refinement o f  the Ag and Mo data sets 

Ag Mo 
h k I alFI a/,~ alFI a/,~ 
1 1 1 0"001 0"1 -0"005 -0"2 
2 2 0 -0"109 -3"2 -0"075 -1"8 
3 1 1 -0"030 -1"2 -0.034 -1"3 
2 2 2 -0"001 -0.2 0"002 0"2 
4 0 0 -0"048 -1-7 -0-074 -2-5 
3 3 1 -0"022 -1"1 -0"086 -4-1 
4 2 2 -0"121 -4"0 -0"002 -0"1 
3 3 3 -0"049 -2"2 -0"035 -1"9 
5 1 1 -0"032 -1"6 0"007 0"3 
4 4 0 -0"010 -0"4 -0"039 -1"8 
4 4 2 -0"028 -7"9 -0"031 -8"9 
6 2 2 -0"021 -10"3 -0"022 -10"9 
4 4 4 -0"015 -0"8 0"008 0-3 
5 5 1 -0'012 -0"5 -0"024 -1"3 
6 4 2 0"006 0"1 0"047 0"8 
8 0 0 -0"068 -2"1 -0"003 -0"1 
6 6 0 0"022 1"4 0-039 2-6 
5 5 5 0"063 3-3 0"055 2"1 
8 4 4 0-022 1"0 0"030 1"1 
8 8 0 0"083 3"8 0.015 0"6 

that the measurements o f f  by Deutsch & Hart (1984) 
are appropriate, and the description of anharmonicity 
within the one-particle-potential approximation of 
Dawson et al. (1967) holds at room temperature, it 
is plausible that these small systematic residuals are 
due to polarization of the L shell, which, although 
small, necessarily exists. The typical residuals sum- 
ming to give these features are of the order of one to 
two e.s.d.'s. From Table 2 it appears that there are 
random errors in both sets of data of as much as 
3cr(lFI). Even data of this quality are not sufficiently 
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Fig. 1. Res idual  e lect ron densi ty  m a p s  af ter  mul t ipo le  ref inement  
of  the Ag and  M o  data.  Nuc lea r  posi t ions are m a r k e d  with a+ .  

3 The con tou r  interval  is 0.005 e / ~ , - ,  with zero and  negat ive  
contours  shown  as dashed  lines. The  m a p  is 3 x/2ao/4 hor izonta l ly  
(along [110]) and  ao vertically.  
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accurate to determine the origin of very small system- 
atic residuals. In summary, we note that in the vicinity 
of the nuclei the model does not fit the data as well 
as it does elsewhere. The m a x i m u m  effect this may 
have on the electron density is of the order of 
0.02 e/I-3,  in a region within ---0.4/1, of the nuclei. 

Fourier maps 

In this section we discuss the deformation electron 
density, Zip(r), and the valence electron density, 
pw~(r), obtained from Fourier summations. For Zip (r) 
the Fourier coefficients are F ~ -  FI~ Ara, where F ~  
is obtained from the independent atom model (IAM) 
using the atomic wavefunction from Clementi (1965). 

o l~core For the calculation of pv,t(r), we sum F H - , ~  , 
where ,nw¢°re is calculated from the density-localized 
K- and L-shell functions of Stewart (1980). B values 
from Table 1 are employed in both cases. The phases 
of the Fourier coefficients are those of F ~  from the 
pseudoatom model. 

Fig. 2 shows maps of Zip(r) from both data sets. 
They are quantitatively similar, characterized by ellip- 
tical bond peaks reaching 0.213 (6) and 
0.204 (6) e/~-3 and deficits of electron density behind 
the nuclei (along [111]) as deep as -0.071 (5) and 
-0.066 (4) e/~-3 for the Ag and Mo data respectively. 
As discussed above, experimental e.s.d.'s in both 
maps are typically between 0.004 and 0.006 e/~-3. 
The maximum deviations between the two maps occur 
in regions away from the bond midpoint, either at 
the nuclei, (-~, 1 1 +, +), or at (3, _~, 3) and symmetry-related 
positions (the site of the large peaks in Fig. 1 for the 

Mo data set). They are at most 0.033 e/~-3. These 
differences are largely due to those reflections which 
are poorly fitted in one pseudoatom refinement but 
not in the other, and are hence most likely to be in 
error experimentally. 

The addition of the density-localized M-shell func- 
tions to the maps in Fig. 2 gives the maps of the 
Fourier-summed valence density in Fig. 3. The agree- 
ment between the two maps in Fig. 3 should be 
identical to that between maps in Fig. 2. The Fourier 
valence density has local minima at the nuclei, rec- 
tangular-shaped bond contours, elongated along the 
bond, with a single peak at the bond midpoint, and 
a local maximum behind each nucleus. The bond 
peaks are 0.617 (6) and 0.609 (6) e/~-3 and the peaks 
behind the nuclei 0.396 (4) and 0.390 (4) e A-  for 
the Ag and Mo data respectively. 

Maps from pseudoatom summations 

Assuming an adequate representation of thermal 
motion, we may assume B = 0 and map any subset 
of the electron density function without thermal 
motion, within the convolution approximation. In 
this manner we map in Figs. 4 and 5 Zip(r) and pray(r) 
corrected for vibrational effects. 

The maps of Zip and pval derived from the 
pseudoatom refinement to the Ag and Mo data sets 
are virtually identical, as expected from the results 
in Table 1. The m a x i m u m  difference between the 
model electron densities derived from the two data 
sets is only 0.010 e A -3. When compared with the 
typical e.s.d.'s in these functions of between 0.003 
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Fig. 2. Deformation electron densities, Ap(r), obtained by Fourier 
summation, for both the Ag and Mo data. Nuclear positions are 

3 marked with a+. The contour interval is 0.025 e A - ,  with zero 
and negative contours dashed. Map dimensions as in Fig. 1. 

Fig. 3. Valence electron densities, pval(r), obtained by Fourier 
summation, for both the Ag and Mo data. Nuclear positions are 
marked with a+. The contour interval is 0"05 e ,~-a, with the 
zero contour dashed. Map dimensions as in Fig. 1. 
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and 0.005 e A -3, this maximum difference of at most 
3tr reinforces our expectation that such e.s.d.'s are 
reliable estimates of the reproducibility of the model 
results. We contour Ap and pv~l with intervals of 0.025 
and 0.05 e/~ -3 respectively, far in excess of the 
e.s.d.'s. Figs. 4 and 5 display maps of Ap and pv~ 
from pseudoatom refinements of both the Ag and Mo 
data sets, to emphasize the excellent agreement 
between the two results. 

The static model Ap(r) maps in Fig. 4 reproduce 
the features in Fig. 2 in all respects. The discernible 
differences are, as expected, in the vicinity of the 
nuclei, where the model exceeds the Fourier-summa- 
tion result, and beyond the nuclei, away from the 
bonds, where the model yields deeper hollows. Peak 
heights are 0.205 (4) and 0.206 (3) e/~-3, and hollows 
-0.093 (4) and -0.086 (4) e A, -3 for Ap obtained 
from the Ag and Mo data sets respectively. Clearly 
the effect of thermal motion on the results in Fig. 2 
is minimal. 

The static model valence-electron density maps in 
Fig. 5 are qualitatively similar to those in Fig. 3, but 
differ in some respects. The model maps have tighter 
contours around the nuclei, due largely to the lack 
of thermal motion in the model maps. The Fourier 
maps display erratic behaviour at large distances from 
the nuclei, and in the case of the Ag data exhibit 
regions of negative electron density. This is not the 
case for the static maps in Fig. 5, indicating that these 
features in Fig. 3 were caused by thermal motion 
and/or  series termination (i.e. the limited number of 
high-angle reflections). 

The most important difference between the maps 
in Fig. 3 and those in Fig. 5 is the presence of twin 
bond peaks in both maps in Fig. 5. The peaks are 
0.594 (3) and 0.600 (3) e/~-3 for the Ag and Mo 
results respectively, with saddle points at the bond 
midpoints of heights 0.575 (4) and 0.577 (3) e A-3 in 
each case. The peaks behind the nuclei in Fig. 5 have 
values of 0.391 (5) and 0.394 (5) e A, -3 for the Ag and 
Mo results respectively. 

Comparison with other experimental results 

There are few maps of Ap(r) or Pvat(r) derived from 
experimental data with accuracy comparable with 
that of the present analysis. YC presented Fourier- 
summation maps of Ap and pv~ based on a data set 
consisting of the room-temperature Mo measure- 
ments of AH, four additional measurements by 
HKKK, and the 442 measurement of Trucano & 
Batterman (1972). The 222 value used by YC is not 
an experimental observation, but was derived by AH 
from an analysis of their data. Its magnitude, 1.352, 
is significantly smaller than the value used in the 
present analysis. No attempt was made by YC to 
correct for anharmonicity. The dispersion correction 
o f f '  = 0.1003 employed for Mo radiation (Wagenfeld, 
Kuhn & Guttman, 1973) was larger than that used in 
the present analysis. 

The Fourier deformation density map of YC (their 
Fig. 3) has features similar to those reported here, 
but the bond peak is -~0.29 e A, -3. YC claim e.s.d.'s 
in their Fourier maps of 0-007 e A, -3, which is unlikely 

M O  
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Fig. 4. Static deformation densities calculated from the 
pseudoatom models derived from both the Ag and Mo data. 
Nuclear positons are marked with a+. Contours as in Fig. 2. 
Map dimensions as in Fig. 1. 

Fig. 5. Static valence densities calculated from the pseudoatom 
models derived from both the Ag and Mo data. Nuclear positions 
are marked with a+. Contours as in Fig. 3. Map dimensions as 
in Fig. 1. 
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given the inclusion of the four HKKK reflections of 
inferior accuracy. From the e.s.d.'s in the data used 
by YC (their Table 1) we obtain values of tr(Ap) 
typically between 0.023 and 0.039 e/~-3, in far better 
agreement with the 1.4% e.s.d.'s in the HKKK reflec- 
tions. A similar estimate of tr(Ap) (0"036 e/~-3) was 
obtained by Scheringer (1980) for the YC results. The 
Fourier map of Pvaj(r) (Fig. 2 of YC) has a larger 
peak (0.69 e A -3) than those in Fig. 3 of the present 
work. Scheringer (1980) commented on these peak 
heights, concluding that they resulted from inac- 
curacy in the four HKKK reflections, an explanation 
we endorse. 

A more subtle difference between the YC maps of 
Pval(r) and those in Fig. 3 is the shape of the bond 
peak. An elliptical shape is reported by YC, but it is 
clear from Fig. 3 that the peak is rectangular in shape. 
The elliptical peaks in Fig. 2 of YC appear to be due 
to the less-accurate HKKK reflections. Although we 
have used a density-localized M-shell function to 
obtain Fig. 3, this differs from the canonical function 
used by YC only in the core region, and hence is not 
the source of the discrepancy. 

A model deformation density map has been repor- 
ted by PMM (their Fig. 1) from pseudoatom 
refinement of the AH room-temperature Mo data. 
Their map was constructed from a Fourier summation 
of F~ without the 222 reflection. PMM obtain a peak 
height of only 0.13 e tl, -3. As noted by Scheringer 
(1980), the 222 reflection contributes --0.07 e A -s to 
the bond peak. The inclusion of this reflection would 
yield a deformation density with a peak height similar 
to Fig. 2 of the present work. 

Scheringer (1980) gives a Fourier-summed Ap(r) 
map from a data set consisting of the 15 AH reflec- 
tions employed by YC, with the 222 measurement of 
Roberto & Batterman (1970) and the 442 measure- 
ment of Trucano & Batterman (1972). The observa- 
tions were phased by a bond-charge model, but were 
not corrected for anharmonicity. The bond peak of 
0.20 e A -3 obtained by Scheringer is comparable with 
those in Fig. 2 above, and Fig. 1 of that work is 
generally similar to our Fig. 2. 

We have found no static model maps of Ap or Pva~ 
derived from experimental data for silicon, except 
for the map of Pval by Stewart & Spackman (1981). 
The map in Fig. 6 of that work was obtained by 
methods similar to those used here. However, the 
model used was less flexible, and substantially under- 
estimates the peak height in the bond (-0.47 e A-s). 

Comparison with theory 

Since we have obtained a representation of p (r) com- 
mensurate with the accuracy of the experimental 
observations, it is appropriate to compare these 
results with theoretical calculations. We do this (i) 
by a comparison of theoretical Ap(r) and (ii) Pval(r) 

maps with the model results above, and (iii) by a 
comparison of theoretical structure factors with a set 
of structure factors derived from the experimental 
measurements corrected for anharmonicity, disper- 
sion effects and harmonic thermal motion. 

(i) Deformation density 

Only one theoretical calculation of Ap(r) in bulk 
Si is known to us, that by Wang & Klein (1981). The 
bond peak obtained in that work is only --0.16 e/~-3, 
with a deficit behind the nucleus of - - 0 . 0 8  e A -s. 
The bond peak compares poorly with both the model 
and Fourier results obtained above. 

Deformation density maps for Si2 have been repor- 
ted by Mrozek, Smith, Salahub, Ros & Rozendaal 
(1980) from calculations made with the Xot-SW, 
D V - X a  and linear muffin-tin orbital methods. The 
agreement of the D V - X a  deformation density with 
our model maps in Fig. 4 is remarkable. The bond 
peak is elliptical and extended perpendicular to the 
bond axis, with a maximum of 0.25 e/~-3. The Si-Si 
distance in Si2 (2.246 A) is considerably shorter than 
that in bulk silicon (2.352 A), which partly explains 
the higher peak obtained in the DV-Xot  calculation 
on Si2. 

(ii) Valence density 

There are many theoretical maps of Pval(r) for 
silicon in the literature. Calculations of the electron 
density in solids typically assume a form of the core 
potential, and solve for the valence-electron density 
consistent with this potential. It is impossible to be 
exhaustive in our comparison with the model results 
in Fig. 5, but we discuss a number of results. 

Chelikowsky & Cohen (1974) calculate the valence 
density in silicon using both local and nonlocal 
pseudopotentials. Both calculations yield valence 
densities with elliptical bond peaks, extended perpen- 
dicular (local pseudopotential) and parallel (non- 
local) to the bond. Both valence densities have single 
peaks of -0 .65 e A -3 in the bond. These results are 
in poor agreement with our model results, in respect 
to both peak shape and peak heights. Similar maps 
of Pval(r) have been reported by Ihm & Cohen (1980), 
Baldereschi, Maschke, Milchev, Pickenhain & Unger 
(1981), Bertoni, Bortolani, Calandra & Nizzoli (1973) 
and Walter & Cohen (1971). 

Hamann (1979) demonstrated that the single peak 
in the valence densities obtained by these authors 
largely results from their use of soft-core 
pseudopotentials. Pval(r) maps obtained by Hamann 
via use of both a hard-core pseudopotential (strongly 
repulsive near the nucleus) and a full potential both 
display rectangular bond contours, with a relatively 
flat maximum. However the maximum in Pval(r) 
between the nuclei was only 0.55 e/~-3, somewhat 
less than the results in Fig. 5. Similar results have 
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been reported by Bachelet, Greenside, Baraff & 
Schluter (1981). 

Zunger & Cohen (1979) and Zunger (1980) mapped 
Pva~ from a nonlocal pseudopotential using essentially 
hard-core pseudopotentials. Their map of Pval(r) can 
be compared quantitatively with those in Fig. 5. Rec- 
tangular contours in the bond are elongated along 
the bond, with a long flat maximum of ---0.60 e/~-3. 
The peak behind the nuclei is 0.38 e/~-3. These values 
compare favourably with the mean values from the 
maps in Fig. 5 of 0.576 and 0.393 e A-3 at the bond 
midpoint and behind the nuclei respectively. 
However, the subtle twin-peaked nature of Pval(r) in 
Fig. 5 is not reproduced. 

Kenton & Ribarsky (1981) performed ab initio 
Hartree-Fock calculations on tetrahedrally coordin- 
ated Si5H12 clusters in an attempt to mimic bulk 
silicon. Valence-density maps obtained for the Si-Si 
bond show a pronounced double peak, with a peak 
height of ---0.50 e/~-3, and heights at the bond mid- 
point of --~0.48 e/~-3. Although smaller in magnitude 
than the maps in Fig. 5, the double-peak nature of 
the ab initio results is supported by the present 
analysis. 

The map of Pwl reported by Wang & Klein (1981) 
compares favourably with the results in Fig. 5, having 
rectangular bond contours, with a plateau level of 
---0.58cA -3, and a peak behind the nuclei of 
---0.38 e A -3. Allowing for the fact that we expect the 
core regions to differ, we find that the map reported 
by Wang & Klein (1981) is in excellent agreement 
with Fig. 5. 

Finally, Yin & Cohen (1982, 1983) have published 
two similar maps, both from ab initio pseudopotential 
calculations. The earlier result (Yin & Cohen, 1982) 
shows rectangular bond contours, with a single bond 
peak of 0.59 e/~-3, and a peak behind the nuclei of 
---0.37 e/~-3. The more recent result shows a distinct, 
although subtle, twin peak in the bond, almost iden- 
tical to those in Fig. 5. The peak values are 
0 .575eA -3, with a saddle-point height of 
0.565e/~-3. The peak behind the nuclei is 
0-380 e A-3. Taken together, these results probably 
represent the closest agreement with the present 
model. It appears likely that subtle modifications of 
the computational procedure of Yin & Cohen 
(1980, 1982) would produce virtually exact agreement 
with Fig. 5. 

(iii) Comparison with theoretical structure factors 

Not all calculations of the electronic structure of 
bulk silicon report maps of either Ap(r) or Pva~(r). 
However, most (including those which report such 
maps) report low-angle structure factors for com- 
parison with experimental results. The experimental 
structure factors are usually corrected for thermal 
motion and anomalous dispersion effects. In some 

Table 3. Mean experimental structure factors for Si, 
corrected for anharmonicity, anomalous dispersion and 

harmonic thermal motion 

Values  a re  
a re  e .s .d . ' s  

n o r m a l i z e d  to a s ingle  Si a t o m .  F igures  in p a r e n t h e s e s  
in the  last  f igures o f  [F~xp[. 

h k l [Fexp[ h k l I Fexpl 
1 1 1 10.737 (5) 4 4 0 6-051 (6) 
2 2 0 8.659 (6) 4 4 4 4.983 (6) 
3 1 1 8.024(6) 5 5 1 4-812 (7) 
2 2 2 0.193 (1) 6 4 2 4.558 (10) 
4 0 0 7.449 (5) 8 0 0 4.178 (7) 
3 3 1 7.251 (6) 6 6 0 3-873 (6) 
4 2 2 6.719 (6) 5 5 5 3.776 (8) 
3 3 3 6.425 (6) 8 4 4 3.148 (8) 
5 1 1 6-445 (6) 8 8 0 2.546(10) 

instances where this is claimed however, it is not in 
fact the case [e.g. experimental values reported by 
Zunger (1980) from AH have not been corrected for 
thermal motion]. 

To aid such comparisons, we determine a set of 
experimental structure factors from the mean Mo and 
Ag radiation data sets. To do this we correct the mean 
structure factors in each set for anomalous dispersion, 
using the experimental f '  values of Deutsch & Hart 
(1984). These measurements of f '  have associated 
e.s.d.'s of 4.7 and 2.1% for the Ag and Mo corrections 
respectively, and the values of tr([FI) are increased 
accordingly. Using these increased e.s.d.'s, we con- 
struct a weighted mean of the two data sets. The mean 
B value obtained from the two pseudoatom 
refinements is used to correct the structure factors for 
thermal motion, and the e.s.d, in the temperature- 
factor correction is included in the final e.s.d.'s. The 
resulting structure factors, normalized to one silicon 
atom, and their associated e.s.d.'s, are given in Table 
3. The value for the 222 reflection is derived solely 
from the measurement of Alkire et al. (1982). We 
have omitted the 442 and 622 reflections; these are 
discussed separately below. 

Using the experimental values in Table 3, we can 
compare the various theoretical calculations with 
experiment. We compare twelve calculations of struc- 
ture factors, either for the total electron density, or 
for the valence density. These are taken from Yin & 
Cohen (1982), Dovesi, Causa & Angonoa (1981), 
Wang & Klein (1981 ), Heaton & Lafon (1981 ), Zunger 
(1980), Zunger & Cohen (1979), Tejedor & Verges 
(1979), Chelikowsky & Cohen (1974) and Stukel & 
Euwema (1970). These publications report varying 
numbers of structure factors, and in the cases of 
Tejedor & Verges (1979) and Chelikowsky & Cohen 
(1974) only valence density structure factors. To these 
we add core contributions obtained from the density- 
localized K and L shells used for the pseudoatom 
refinements (Stewart, 1980). We include both the local 
and nonlocal pseudopotential results from 
Chelikowsky & Cohen (1974), and four sets of results 
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Table 4. Unweighted R factors for agreement between 
twelve theoretical structure-factor determinations, and 

the mean experimental values in Table 3 

N is the n u m b e r  o f  reflections compared  in each case. 

Ca lcu la t ion  reference  100 x R N 

Yin & Cohen (1982) 1.12 10 
Dovesi et aL (1981) 0.73 11 
Wang & Klein (1981) 0.50 10 
Heaton & Lafon (1981) 0.45 8 
Zunger & Cohen (1979); Zunger (1980) 1-49 10 
Tejedor & Verges (1979) 0.94 10 
Chelikowsky & Cohen (1974) local 1-19 10 
Chelikowsky & Cohen (1974) nonlocal 0.77 10 
Stukel & Euwema (1970) Sl 1.45 11 
Stukel & Euwema (1970) KSG 0.43 11 
Stukel & Euwema (1970) S1-RHF 0-35 11 
Stukel & Euwema (1970) KSG-RHF 0.35 11 

from Stukel & Euwema (1970), labelled by those 
authors as S1, KSG, S1-RHF and KSG-RHF. 

In Table 4 we compare unweighted R factors (R = 
Y IIFoxpl-IF, oorll/Y IFoxpl) for these theoretical 
calculations. Although most calculations are claimed 
to be in good agreement with experiment, the R factor 
is surprisingly poor in some cases. In particular, 
agreement factors obtained for the data sets of Yin 
& Cohen (1982) and Zunger & Cohen (1979; Zunger, 
1980) of 1.12 and 1.49% respectively are not in accord 
with the excellent agreement reported above between 
their maps of pvat(r) and the experimental results. 
Closer inspection reveals that, for these two sets of 
structure factors, IFoxpl always exceeds IFt od. The 
difference is as large as 0.22 electrons for the 331 
reflection, and persists for the highest-angle reflection 
reported (440). Such a systematic discrepancy 
strongly suggests an inappropriate core contribution 
added to the Fourier-transformed valence densities 
obtained by these authors. A systematic difference is 
also seen in the S1 set of Stukel & Euwema (1970), 
where I Foxpl is uniformly less than I F,.oorl- Such errors 
prevent us from making strong conclusions based on 
agreement indices alone. 

Based on the R factors in Table 4, three sets by 
Stukel & Euwema (1970) and those by Heaton & 
Lafon (1981) and by Wang & Klein (1981) stand out 
from the rest. The Hartree-Fock calculation of Dovesi 
et al. (1981) is noticeably inferior, as it substantially 
overestimates all key low-angle reflections, while 
underestimating the important 222 reflection by 40%. 

The 442 and 622 reflections 

The measurements of the weak 442 and 622 reflections 
used in our pseudoatom refinements and Fourier 
analyses are from Tischler & Batterman (1984), cor- 
rected for anharmonicity by those authors. It is 
evident from the residuals listed in Table 2 that our 
model is a very poor fit to these data points, A IFI 
being typically 10tr(lF l) for both reflections. This is 

worrying since the measurements of Tischler & Bat- 
terman (1984) agree with earlier results of Mills & 
Batterman (1980) and Trucano & Batterman 
(1972). 

As noted by Tischler & Batterman, the structure 
factors of these reflections (for which h + k + l = 4n + 
2) result from both the antisymmetric electron distri- 
bution vibrating harmonically and the centrosym- 
metric electron distribution vibrating anharmonically. 
The sum of these two contributions is measured 
experimentally, and is evidently reproducible. 
However, the correction of these values for anhar- 
monic effects is not as straightforward as indicated 
by Tischler & Batterman (1984). These authors appear 
to use values of the anharmonic force constant, /3, 
from the measurements of Hastings & Batterman 
(1975). These values, 1.61 and 1.38eV/~ -3, are 
derived from the high-temperature (i.e. above room 
temperature) behaviour of the neutron 442 and 622 
reflections respectively. They are substantially less 
than the value of 3.38 eV/~-3 obtained from the room- 
temperature neutron 222 reflection, and used for 
anharmonicity corrections in this work. It is possible 
that /3 at room temperature may differ from fl at 
higher temperatures due to a breakdown of the 
one-particle-potential approximation (Mair, private 
communication). 

To ascertain the effect on the anharmonicity- 
corrected structure factors, we rescale the corrections 
applied by Tischler & Batterman by the ratio of/3 
values appropriate to each reflection. This yields 

~pbond --4421~b°nd --" -0.0926 and --622 = -0"0240, compared with 
the values of -0.0635 and -0.0046 reported by these 
authors. These substantially different estimates are in 
excellent agreement with the mean of the values 
obtained from the model refinements (-0-093 and 
-0.025 for the 442 and 622 reflections respectively). 
Not only are the magnitudes predicted well by the 
model, but the signs of both reflections are in agree- 
ment with experiment. These modified values of F b°nd 
are also in better accord with the theoretical values 
reported by Tischler & Batterman from the ab initio 
pseudopotential calculation of Yin & Cohen (1982) 
(-0.084 and -0-020 for the 442 and 622 reflections 
respectively), although it is not clear whether the 
theoretical values include the Debye-Waller factor; 
the original work of Yin & Cohen (1982) does not 
report structure factors for the 442 and 622 reflections. 

If similar considerations are applied to the 
measurements of the Ge 442 and 622 reflections by 
Tischler & Batterman, it is quite likely that the sign 
of the Ge 442 structure factor would become negative, 
in agreement with the result of Yin & Cohen (1982). 
Far from yielding an unambiguous change of sign in 
Fbond between Si and Ge as claimed by Tischler & 442 
Batterman, the uncertainty over which value of fl to 
use for the anharmonicity correction precludes a 
definitive conclusion. 
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The model results for the 442 and 622 structure 
factors indicate that the pseudoatom refinement used 
in the present analysis of the experimental data yields 
a reliable representation of the static electron distribu- 
tion in bulk silicon. The weak 4n +2 reflections are 
reproduced accurately, both in phase and magnitude, 
if we accept the more appropriate room-temperature 
anharmonicity correction for the 442 and 622 reflec- 
tions. This is not the case for the simple bond-charge 
model employed by Scheringer (1980), which yields 
values of +1.419 and +0.025 for the 222 and 442 
reflections respectively. This underestimates the 222 
structure factor, and predicts the wrong sign for the 
442 reflection. The use of bond-charge models for the 
analysis of accurate diffraction data therefore appears 
to be limited to the description of the gross features 
for which it was devised (i.e. bond charges). It is 
inadequate for the description of the more subtle 
features of the electron density distribution. 

Summary 
The major conclusions of the analysis of the experi- 
mental data are: 

(i) zip(r) for silicon is characterized by an elliptical 
bond peak, elongated perpendicular to the bond. The 
peak height (from the pseudoatom model) is 
0-206 (3)e/~-3. There is a corresponding region of 
deficit of electron density behind the nuclei, peaking 
along [111], with maximum depth -0.090 (4)e/~-3. 

(ii) The valence density derived from the 
pseudoatom model displays a distinct twin peak in 
the bond. The peaks are located 0.85 A from the 
nucleus, with a height of 0.597 (3) e A-3; the saddle 
point at the bond midpoint has a value of 
0.577 (3) e A-3. The peak behind the nuclei reaches 
0.393 (5) e/~-3. 

(iii) The valence density derived from a Fourier 
summation shows a single peak in the bond, with 
height 0.613 (6) e A-3. This is an artefact of the effects 
of both thermal motion and series termination. 

(iv) The two mean data sets, Ag and Mo, give 
essentially identical results, both from Fourier 
summations and model fitting. 

(v) There are systematic residuals after model fits 
to both data sets, of approximately the same magni- 
tude as the experimental e.s.d.'s in the observations. 
Similar residuals are observed in model refinements 
of the low-temperature data of AH (both Ag and Mo 
sets), and suggest L-shell deformations, both 
spherical and aspherical, which were not included in 
the model. 

(vi) The weak 442 and 622 reflections measured 
by Tischler & Batterman (1984) appear to have been 
corrected for anharmonicity with an inappropriate 
value of/3, the cubic anharmonic force constant. 

A detailed comparison of the derived experimental 
electron distributions has been made with a large 

number of theoretical determinations of the electron 
distribution. Salient features of this comparison are: 

(i) There appear to be errors in the computation 
of structure factors from theoretical electron densities 
in the work of Yin & Cohen (1982), Zunger (1980), 
Zunger & Cohen (1979) and Stukel & Euwema (1970; 
SI set only). These can be attributed to the use of an 
inappropriate core scattering factor. It is suggested 
that the density-localized core functions of Stewart 
(1980) are appropriate for this purpose, as they are 
compatible with the nodeless valence-electron 
densities in the theoretical calculations. 

(ii) The best agreement with experiment is 
obtained with the ab initio pseudopotential method 
of Yin & Cohen (1980, 1982, 1983), notwithstanding 
the computational errors described above. Excellent 
agreement with experiment is also obtained for the 
calculations of Zunger (1980), Zunger & Cohen 
(1979), Heaton & Lafon (1981), Wang & Klein (1081) 
and Stukel & Euwema (1970; KSG, S1-RHF and 
KSG-RHF sets). The calculation by Dovesi et al. 
( 1981) predicts the correct topography of Ap and pv~a, 
but consistently underestimates the magnitude of the 
features. 

(iii) The single-peak valence densities reported by 
Chelikowsky & Cohen (1974) are the result of the 
use of soft core pseudopotentials (Hamann, 1979), 
and are not supported by the present experimental 
analysis. 

We believe that the results we have derived from 
experimental data, and presented in Figs. 2 through 
5, currently provide the best possible representation 
of the electron distribution is silicon. They are 
superior to the results of Yang & Coppens (1974). 

The author is grateful to Dr E. N. Maslen for 
invaluable discussions, and to Drs S. L. Mair and H. 
P. Weber and Mr R. G. Nanni for a critical reading 
of the manuscript. This work was supported by the 
Australian Research Grants Scheme. 

Note added in proof: Subsequent to submission of 
the manuscript, Deutsch & Hart (1985a, b) published 
accurate structure factors for eight reflections. No 
attempt has been made to incorporate these measure- 
ments into the above analysis. Three of the reflections 
are common to the present data set, but the remaining 
five yield virtually no information on the valence- 
electron distribution, since they lie in the range 1.04 < 
sin 0/A < 1.56 A-1. They do however provide further 
insight into thermal motion and K- or L-shell polariz- 
ation in silicon. Deutsch & Hart (1985b) derive B = 
0.4632 (41)/~2 from the three lowest-angle measure- 
ments, in exact agreement with the mean value of 
0.4632 (11) /~ 2 obtained in the analysis above. A 
larger B value of 0.5085 (35)/~2 is obtained from the 
three highest-angle reflections, suggesting a different 
thermal motion for the K and L shells. Those authors 
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also find no anharmonic contribution to the structure 
factors within the accuracy of the experiment, in 
contradiction of the analysis above. The neglect of 
an anharmonicity correction in the present work 
would make a trivial difference to the resulting elec- 
tron distribution; it is not of critical importance. 
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